
praatpicture: A library for making flexible Praat Picture-style figures in R

Rasmus Puggaard-Rode

Institute for Phonetics and Speech Processing, LMU Munich

r.puggaard@phonetik.uni-muenchen.de

Introduction. The plotting utility available through Praat (Boersma and Weenink 2023), usually accessed through the
Praat Picture window of the graphical user interface (GUI), is ubiquitous in phonetics. Praat Picture is a flexible tool
which can produce a wide variety of figures, although its most common application is probably plotting one or more
acoustic signals which are time-aligned with annotations written in the .TextGrid file format; indeed, Praat Picture
is undoubtedly the most widely used method for producing this very common style of figure. Praat Picture can either
be used with the GUI, which limits the tool’s flexibility quite a bit, or with scripts written in Praat’s specialized custom
scripting language.
The software environment R (R Core Team 2023), which is much more general-purpose than Praat, is used by many
phoneticians for a big portion of their processing and analysis pipeline, and increasingly also for preparing manuscripts
and presentations using the RMarkdown and Quarto formats (Xie 2015). This presents a need for a similarly flexible
plotting utility that can visualize acoustic signals with time-aligned annotations in R, allowing phoneticians to keep as
much as possible of their workflow in one software environment.
This paper introduces an R library, praatpicture, which aims to fill this gap. The purpose of praatpicture is
to produce figures of acoustic signals with time-aligned annotations that by default resemble their counterparts in Praat
as much as possible, and to allow for at least the same degree of flexibility as plotting in Praat, while relying on signal
processing tools that are already available in R. praatpicture relies on base R graphics tools, which presents some
advantages over Praat, including the ability to resize figures dynamically (i.e. without regenerating figures with new
size parameters), and the ability to use any font available to the system. Version 0.6.0 of praatpicture is currently
available from GitHub (https://github.com/rpuggaardrode/praatpicture).

Usage and options. The core function of the library is praatpicture(), which only takes one obligatory argument,
sound, giving the name of a sound file with the .wav extension. Calling praatpicture() with just one argument
will produce a very common figure format: a waveform, a spectrogram, and annotations with dotted lines in the various
figure components indicating the locations of annotation boundaries (see the left panel of Figure 1). (This assumes that
there is a file with the .TextGrid extension and the same base name as the .wav file in the same directory, but the
make_TextGrid() function also allows users to create time-aligned annotations interactively in R.) In the following,
I give a brief and incomplete overview of the options available to users of the package, some of which are visualized with
accompanying code in the right panel of Figure 1; argument names which cooccur in the text and in Figure 1 are given
in parentheses in the text and are bolded in the figure.
The user can control the size of individual plot components (proportion) and which portion of a sound file to plot
(start, end). Using Praat’s terminology, the user can control which annotation tiers to plot (tg_tiers) which
boundaries to show throughout all figure components (tg_focusTier), and the appearance of these boundaries
(tg_focusTierLineType). In addition to waveforms, spectrograms, and annotations, praatpicture can also
plot pitch tracks, formant tracks, and intensity tracks (frames). The user can control how derived signals are generated
– i.e., which window shape and size to use, dynamic range, pitch floor and ceiling, how many formants to calculate, etc.
– and how they are visualized – i.e., which frequency range to show (e.g. pitch_freqRange), whether pitch and for-
mants should be ‘speckled’ or ‘drawn’ (e.g. pitch_plotType), which frequency scale to use (e.g. pitch_scale),
which colors should be used for plotting individual plot components, etc. – with largely the same arguments as those
available in Praat. Several options are available for highlighting parts of a figure (e.g. draw_rectangle, annotate).
A sister function to praatpicture(), called emupicture(), is available for users of the EMU Speech Database
Management System (Winkelmann, Harrington, and Jänsch 2017) who wish to plot annotated signal data directly
from an EMU database. No such plotting utility has previously been available. The library also offers the function



praatpicture(sound=’ex.wav’)

praatpicture(sound=’ex.wav’, start=0.54, end=1.82,
frames=c(’sound’,’pitch’,’intensity’,’TextGrid’), proportion=c(20,35,30,15),
tg_tiers=c(’phone’,’word’), tg_focusTier=’word’, tg_focusTierLineType=’dashed’,
pitch_plotType=’speckle’, pitch_freqRange=c(75,250),
pitch_scale=’logarithmic’, draw_rectangle=c(’pitch’,0,120,0.2,250),
annotate=c(’pitch’,0.1,110,’pitch peak’), family=’Charis SIL’)

Figure 1: Two examples of figures generated with praatpicture and the code used to generate them.

talking_praatpicture() for creating video files of figures with embedded audio, and praatanimation() for
easily creating praatpicture()-based animations.

Implementation. Spectrograms are generated in R using the phonTools package (Barreda 2023). Other derived
signals are generated using the wrassp package in R (Winkelmann, Bombien, et al. 2023). Pitch is calculated using the
ksvF0() function, formants are calculated using the forest() function, and root-mean-squared intensity is calculated
using the rmsana() function. In all cases, default parameters are set to emulate those in Praat as much as possible, such
as e.g. using Gaussian-like window shapes across the board. When results still differ, it is because the underlying
algorithms are not identical.
.TextGrid files are read into R using the rPraat package (Bořil and Skarnitzl 2016), optionally converting to
Praat’s special character formatting using a custom script. It is also possible to plot pitch, formant, and intensity with
praatpicture() using values calculated in Praat, if the signals are saved from Praat using the same base file name as
the .wav file in the same directory; these are then also read into R using rPraat. Alternatively, any other software can
be used to calculate these signals, as long as they are stored in the Simple Signal File Format (SSFF).

Conclusion. praatpicture provides an opportunity for phoneticians who use R (and potentially EMU-SDMS) to
keep more of their workflow in R, by allowing users to make familiar-looking figures in a general-purpose software
environment without necessarily relying on the plotting and signal processing tools in Praat. Using base R graphics tools
to produce these figures arguably has a number of advantages in terms of flexilibity. praatpicture currently has most
of the same options as Praat does in terms of producing figures with time-aligned acoustic signals and annotations. The
library is still in development, so existing features will be augmented and more features will be added over time.

References.
Barreda, Santiago (2023). “phonTools. Tools for phonetic and acoustic analyses”. (Version 0.2–2.2). URL: https://CRAN.R-project.org/

package=phonTools.

Boersma, Paul and David Weenink (2023). “Praat. Doing phonetics by computer”. (Version 6.4.01). URL: https://fon.hum.uva.nl/praat/.

Bořil, Tomáš and Radek Skarnitzl (2016). “Tools rPraat and mPraat. Interfacing phonetic analyses with signal processing”. In: Text, speech, and
dialogue. Ed. by Petr Sojka, Aleš Horák, Ivan Kopeček, and Karel Pala. Cham: Springer, pp. 367–374. DOI: 10.1007/978-3-319-45510-
5_42.

R Core Team (2023). “R. A language and environment for statistical computing”. (Version 4.3.2). URL: https://R-project.org.

Winkelmann, Raphael, Lasse Bombien, Michel Scheffers, and Markus Jochim (2023). “wrassp. Interface to the ASSP library”. (Version 1.0.4). URL:
https://CRAN.R-project.org/package=wrassp.

Winkelmann, Raphael, Jonathan Harrington, and Klaus Jänsch (2017). “EMU-SDMS. Advanced speech database management and analysis in R”. In:
Computer Speech & Language 45, pp. 392–410. DOI: 10.1016/j.csl.2017.01.002.

Xie, Yihui (2015). Dynamic documents with R and knitr. Boca Raton: CRC Press.


